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Some Applications of Categorical Data
Analysis to Epidemiological Studies
by James E. Grizzle* and Gary G. Koch*

Several examples of categorized data from epidemiological studies are analyzed to illustrate that more
informative analysis than tests of independence can be performed by fitting models. All of the analyses fit
into a unified conceptual framework that can be performed by weighted least squares. The methods
presented show how to calculate point estimate of parameters, asymptotic variances, and asymptotically
valid x2 tests. The examples presented are analysis of relative risks estimated from several 2 x 2 tables,
analysis of selected features of life tables, construction of synthetic life tables from cross-sectional studies,
and analysis of dose-response curves.

Introduction
During the past 25 years there has been a remark-

able resurgence in the development of statistical
methods for the analysis of categorized data. The
methods available are comparable in flexibility and
analytical power to those commonly used for inter-
vally scaled data.

It is a measure of the development in this area that
well written reasonably comprehensive text books
are available; for example Bishop, Fienberg, and
Holland (1), and Fienberg (2). Powerful computer
programs for a variety of analyses are also available
from several sources. Methods of analysis based on

weighted least squares, maximum likelihood and
minimum discrimination information are being vig-
orously pursued.
These methods may yield different analytical

results in small samples even though they are
asymptotically equivalent. However, the small sam-
ple properties of these approaches still represents an
area ofresearch where not much definitive is known.

In the authors' opinion, the importance of these
developments lie in their ability to go beyond the
usual tests of association by permitting the examina-
tion ofmore specific hypotheses about single or sev-
eral multiway tables. Their generality allows data of
different types for which the conventional hypoth-
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eses of association or homogeneity are of little inter-
est to be analyzed in ways that are more relevant.

In most cases estimation and testing can be per-
formed by weighted least squares (WLS), maximum
likelihood (ML), or minimum discrimination infor-
mation. In some instances WLS and ML can be
combined in useful ways.

In this paper we shall present some examples of
the application of WLS methods to data arising in
epidemiological investigations.

Notation
To fix ideas, consider the hypothetical data shown

in Table 1 and the expected cell probabilities shown
in Table 2. The development which follows is based
on the methodology discussed in more detail in Griz-
zle, Starmer, and Koch (3), which hereafter is ab-
breviated as GSK.

Table 1. Frequency distribution.

Categories of response
Populations

(factors) 1 2 ... r Total

I nil ?l12 ... . nlr n

2 nf21 n22 . . . n2r 2.

s fnl n ,2 ... n,n,.

October 1979 169



Table 2. Expected cell probabilities.

Categories of response
Populations
(factors) 1 2 ... r Total

1 7711 2712 . . . 1Ir

S r 51 r 82 1Tsr

We define

ii = [1Til, 7Ti2, * * Vir]
Jr = [7in ,1T2,. . Sr]

1 xrs

and their sample proportion analogs as

Pij = nijln .

Pi = [Pil Pi2i * *, Pir]
I xr

pt= [pf, p2,. ., p8]
1 x rs

Let

var (p)= V (ri)=
r xr nl.

inl (1 - il)
-L li2lril

L-Irirlril

- lri lri2 . . .

lri2 (1 - Ti2) *--

*Tir2 . .

- lirlri2 *.*

- 7ilTir
- 1Ti27rir

where

V (pi) = sample estimate of V(ri)
r X r

V (p) = block diagonal matrix having V(pi)
rs X rs on the main diagonal

fm (ir) = any function of the elements of X that has
partial derivatives up to second order with
respect to the iTrU, m = 1, 2, . .., u -- (r - 1)

fm (p) = fm (Xr) evaluated at 7r = p
[F(ir)]' = [fi (r),f2 (7), . . ., fu (7r)]
F' = [F[(p)]' = Ifs (p), f2 (p), .. .fu (P)];

r afm(T) | 1
HXr li=i| Pd]
S =HV (p) H'

We assume that the functions fi (Xr) are jointly
independent of one another and of the constraint

I Tij = 1
j = 1

i = 1, 2, . . ., s

i.e., both H and HV (vr)H' are of rank u. When these
conditions hold, then S is expected to have rank u.
However, for some types of data, if some of the nij =
0, S will be of rank less than u. Therefore, if difficulty
is created by an occasional nij = 0, we follow
Berkson (4) and suggest that it be replaced by l/r.
This has the effect of making the estimate of m.u be
l/rni., which is the extension of Berkson's procedure
to the multinomial case. However, we have made no
extensive investigation ofthe effect of this rule in the
multinomial case such as Berkson did for the bino-
mial case. Alternatively, the combined WLS and ML
methods described in Koch et al. (5) can be used to
bypass this type of difficulty (see Example 4).

Estimation and Testing
We assume that

F (X)= X /
u x I u x v vxI (1)

where X is a known design matrix (which may be
different from the usual design matrix in the sense of
reflecting a multivariate framework when more than
one function is constructed within each population
as will be illustrated later) of rank v c u and /3 is a
vector of unknown parameters.

Several workers have shown that if the hy-
pothesized model fits the data, a best asymptotic
normal (BAN) estimate of /8 is given by b, when b is
the vector which minimizes (F - Xb)' S-1 (F - Xb).
The minimum value of this form may be used to test
the fit of the model F(7r) = Xf3. Given that the pre-
sumed model provides an adequate fit to the data, a
test of the hypothesis Ho: C,8 = 0 is produced by
conventional methods of weighted multiple regres-
sion, where C is a (d x v) matrix of arbitrary con-
stants of full rank d ' v.
The test statistic for the fit of the model is

SS [F (Xr) = X/3] = F'S-1 F - b' (X'S-1 X)b (2)

which has asymptotically a (central) x2-distribution
with D.F. = (u - v) if the model fits, where b =
(X'S-1X)-l X'S-1F. Given the model, the test of the
hypothesis Ho: C,8 = 0 is produced by

SS [C18 = 0] = b'C' [C(X'S-1X)-1C']-1Cb
which has asymptotically a x2-distribution with D.F.
= d if Ho is true.

In many cases there is only one population, and
the objective of the statistical analysis is to study the
relationships among several ways ofclassification of

Environmental Health Perspectives170



the sample units. Many tests appropriate to this
problem can be formulated as

F (0)= 0.

u x

This fits into the general framework by setting X =

Iu, the identity matrix so that b = F and using C = lu
so that the test statistic is F'S-1F, which has
asymptotically a x2-distribution with D. F. = u if Ho
is true.

Special Cases off(r)
The form of S depends on H and through H on the

function F(n-). Therefore for each family offunctions
F(r), S will be different. For linear relationships, one
can define a family of functions

F(Ir)= A
u X rs

iT

rs X 1

where A [Eq. (3)]

ll a112 ... allr; a121 a122 ... al2r; * *; a,8. a12 ... aJlr

a2ll a212 . .. a2lr; a22i a222 ...a22r; ....;a2s, a2.2 *... a2sr

au,, aU12 . . ...aulr; au2i au22 . ...... au2r; . . .;auslU8ausr .

(3)

is ofrank u c s(r - 1); the ar1ij are arbitrary constants.
For logarithmic relationships, one can define the
family of functions

F (7r) = K1 log A XT
t x l t x u u x rs rs x (4)

the a-th element of F(T) has the form

Fa(IT) = E kay log I a,ijvi)

where the ayj and kay are the appropriate elements of

A and K, respectively. Here, K is a matrix of arbi-
trary constants of rank t sj c rs. Some care must be
exercised to make sure that the H associated with the
functions described above is of full rank (i.e., of rank
u for the linear case and of rank t for the logarithmic
case).
The matrix of partials of the first transformation

F(r) = Ar is H = aFlav = A, and S = AV(p)A'. In the
second case H = [F/a7r I Tr = p] = KD-1A and S =

KD-1 AV(p) A'D-1K', where A is as defined previ-
ously; and

alp 0 ..
O a2p ... O

D = . . ...

L O ... aup_
where a' represents the -y-th row of A.

Examples
Example 1: E
Multinomial]

(6)

Ixamination of Several
Distributions

Multiway contingency tables often have some of
the ways of classification fixed in advance. These
tables correspond to designs in which the response to
each 'treatment' is represented by a multiway table
whose entries have a multinomial distribution. Often
the problem is to determine how functions of the
multiway table being considered as the response de-
pend on the design variables. An example of data of
this type is given in Table 3.
These data were collected in an international study

of atherosclerosis (6). The complete table is an ex-
ample with two dependent variables (responses),

Table 3. Cases of coronary heart disease classified by type of lesion, age, location, and race.

New Orleans White Oslo New Orleans Negro

Infarct Age No Yes No Yes No Yes

Myocardial scar (35-44) No 9 8 No 7 3 No 4 7
Yes 6 6 Yes 2 5 Yes 2 3
eu = 1.125 eu = 5.838 eu = 0.857

Myocardial scar (45-54) No 10 26 No 6 8 No 10 8
Yes 16 14 Yes 7 11 Yes 14 4
eu = 0.337 eu = 1.179 eu = 0.357

Myocardial scar (55-65) No 18 47 No 10 22 No 4 13
Yes 28 21 Yes 39 39 Yes 14 2
eu = 0.287 eu = 0.455 eu = 0.044

Myocardial scar (65-69) No 3 13 No 5 16 No 0 4
Yes 11 5 Yes 27 16 Yes 3 2
eu = 0.105 eu = 0.185 eu = 0.000
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infarct and myocardial scar, which we denote by i
andj, respectively, and two independent variables
(in the regression sense), age and the combination
location and race, denoted k and 1. Within each com-
bination ofthe independent variables we have a 2 x 2
subtable with observed cell frequencies as shown in
Table 4.
Neither of the two marginal totals for this subtable

is considered fixed and the corresponding expected
cell probabilities are 7r.kl wherelijZTikl = 1 for all
combinations of k and 1. If infarct and scar are inde-
pendent within this subtable

7T1lklT22klI17T2klT21kl = 1 (7)

or taking the logarithm

Pkl = In 7lTlkl - In T12kl - In T21k1 + In lT22ki
=0 (8)

This suggests using Ukl, the sample estimate of Tkl,
as a measure of association. In this problem it would
be informative to investigate how Uki depends on age
and the combination race-location.
We consider the model

E(uk) = .* + a** + S*, (9)

where ,u,* is the overall mean effect, at, k = 1,2,3,4,
is the effect of the k-th age group and ,f3*, I = 1,2,3, is
the effect of the l-th location-race combination. We
reparametrize to incorporate the restrictions a*k = 0
and f31 = 0, which is equivalent to calculating the
estimates from:

Ull

U12

U13
U21

U22

U23

U31
U32
U33

U41

U42

U43

1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1
1 -1 -1 -1
1 -1 -1 -1
1 -1 -1 -1

1 0
0 1

-1 -1
10
0 I

-1 -1
10
0 1

-1 -1
10
0 1

-1 -1I

where the elements of u are the appropriate Ukl val-
ues taken from Table 3. We substituted (1/4) for the
zero nl143 in order to avoid a singular S matrix. The
remainder of the analysis is identical to weighted
multiple regression. In this case the analysis is par-
ticularly simple since S is a diagonal matrix with lij
(l1lnUkd) on the diagonal.
The residual from fitting the model is the age x

location-race interaction with respect to the measure
of association u. In addition, we can investigate how

al
1a2 = Xf
a31

182

this measure of association depends on age and the
location-race combination.
The estimated parameters and the analysis of var-

iance are shown in Tables 5 and 6, respectively.
Given the model the residual sum of squares is

distributed as x2 with D.F. = 6; thus we conclude
that the model fits the data adequately. The various
other sums of squares are calculated using the gen-
eral hypothesis form Ce = 0. Thus

Table 4. Observed cell frequencies.

Infarct

No Yes

Myocardial scar No nllkl n12k1
Yes n21kl n22k1

n .kl

Table 5. Estimated parameters and their standard errors for the
data in Table 3.

Parameter Estimate Standard error

,u -1.036 0.236
ai 1.496 0.443
a2 0.281 0.343
a3 -0.413 0.296
f31 -0.021 0.270
,82 0.776 0.293

Table 6. Analysis of variance for the data in Table 3.

Source of variation DF SS

Age groups 3 16.61
Linear trend of age 1 16.28
Remainder 2 0.33

Race and location combinations 2 7.06
N.O. white vs. N.O. Negro 1 1.59
N.O. white vs. Oslo 1 3.55
N.O. white + N.O. Negro vs.

2 Oslo 1 7.00
Residual 6 2.62

0 1 0 000
C= O 0 1 0 0 0

0° 0 1 0 0 (1 1)

yields the test of homogeneity of age groups. To test
for approximate linearity of the age effects (note that
the last age group covers only a 5-year span), we
chose the linear contrast - 3a' - at + al! + 3al = 0.

Taking into account the restrictions on the estimates,
we find the contrast is estimated by - 6CYl - 4a&2 -

2a3. For testing we might equally well choose 3ai +
2a2 + a3, which implies that we could use C = (0, 3,
2, 1, 0, 0,). We can produce other tests similarly.
We conclude from the analysis that there is no age
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by location-race interaction and that the measure of
association varies linearly with age. The major dif-
ference in race and location combination is between
Oslo residents and New Orelans residents as shown
by the test statistic for the contrast (,81 - 2,81 + f83
= 0).
The above method of analysis can be extended

readily to contingency tables having subtables of any
number of dimensions with or without some of the
probabilities being zero because of a priori con-

traints. More than one function ofthe probabilities of
the subtables can be considered dependent variables
as in regression and we can examine how they de-
pend on the independent variables.

Example 2: Analysis of Selected Features of
Life Table.

This example has been discussed previously by
Koch, Johnson, and Tolley (7). They show how to
set up a life table in contingency table form that is
amenable to analysis by WLS methods. Then they
proceed to show the analysis of selected features of a
life table can be examined in more detail.
The data were originally discussed by Zippin (8) in

the context of a project carried out by the End Re-
sults Group of the National Cancer Institute, to
compare two classification schemes for breast
cancer- one due to the International Union Against
Cancer and the other due to the American Joint
Committee on Cancer Staging and End Results Re-
porting (9). The data on a subgroup of 1233 of the
original 2039 were analyzed by Cutler and Myers (10)

as a statistical examination ofthe classification ofthe
extent of disease in cancer of the breast.

In their analysis, the cases were classified into 18
subgroups corresponding to the following classifica-
tion:

1. Degree of skin fixation (S)
a. None (So)
b. Incomplete (Si)
c. Complete (S2)

2. Node status (N)
a. Clinically negative (No)
b. Palpable (Ni)

3. Tumor size (T)
a. 2 cm. or less (TO)
b. More than 2 cm but less than 4 cm (T2)
c. More than 4 cm (T3)

Table 7 shows the five year survival rates, and
their standard errors for each of the 13 groups.
The variation in the five year survival rates with

respect to the factors S, N, and T can be investigated
by using the WLS methodology in GSK. Let

F (Qr) = G (12)

denote the vector of u = 18 five-year survival rates.
Then linear regression models of the form

F (r) = X,/ (13)
can be fitted by weighted least squares where X is a
specified (18 x v) coefficient or design matrix of rank
v c 18, f8 is the corresponding vector of parameters
to be estimated, and weighting is with respect to the
reciprocals of the appropriate estimated variances.
A goodness-of-fit test of the model and tests of
hypotheses are obtained by applying the methods
outlined above with F and S replaced by G and VG.

Table 7. Summary results of each of 18 groups based on different models.

Est. Pred. Pred. Std. error Residual
No. of 5-yr. std. based based of X3 of X3

Category cases survival error on X2 on X3 predicted value predicted value

SolVoTi 195 0.88 0.024 0.90 0.89 0.020 -0.01
SoWoT2 226 0.77 0.028 0.76 0.76 0.018 0.01
SoWoT3 9 0.62 0.050 0.59 0.64 0.032 -0.02
SoIViTi 72 0.78 0.049 0.79 0.77 0.030 0.01
SoWIT2 89 0.67 0.050 0.64 0.64 0.026 0.03
SoWV1T3 53 0.49 0.069 0.47 0.51 0.035 -0.02
SiNoTi 41 0.95 0.034 0.90 0.95 0.027 0.00
SLNoT2 114 0.74 0.042 0.76 0.72 0.017 0.02
SNNoT3 78 0.51 0.057 0.59 0.48 0.036 0.03
SiNiTi 24 0.63 0.099 0.79 0.59 0.024 0.04
StN1T2 55 0.58 0.066 0.64 0.59 0.024 -0.01
SiNiT3 59 0.57 0.065 0.47 0.59 0.024 -0.02
S2NoTi 15 0.93 0.069 0.83 0.90 0.035 0.03
S2NoT2 30 0.67 0.086 0.68 0.67 0.031 0.00
S2NoT3 26 0.38 0.095 0.51 0.43 0.047 -0.05
S2NiTi 7 0.71 0.171 0.71 0.67 0.044 0.04
S2N1T2 15 0.47 0.129 0.56 0.55 0.035 -0.08
S2NiT3 38 0.39 0.079 0.39 0.42 0.037 -0.03
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The first model fitted has a matrix of independent
variables.

1 1-1 1 1-1 1-1 1-1 -1 1 1-1 1-1-1 1
1 1-1 1 1-1 0 2 0 0 2-2 0 2 0 0 2-2
I 1 -1 1 1 -1 1 -1-11 -11-1 -1 1 -1 1
1 1-1-1-1 1 1-1 1-1-1 1-1 1-1 1 1-1
1 1-1-1-1 1 0 2 0 0 2-2 0-2 0 0-2
1 1 -1-1-1 1-1-1-1 1-1 11 1 1-1 1-2
1 0 2 1 0 2 1-1 0 2 0-2 1-1 0 2 0-2

Xi1 0 2 -1 0 -2 0 2 0 0 0 4 0 -2 0 0 0
1 0 2 1 0 2-1-1 0-2 0-2-1-1 0-2 0-2
1 0 2 -1 0 -2 1 -1 0 2 0 -2 -1 1 0 -2 0 2

X. = 1 0 2-1 0-2 0 2 0 0 0 4 0-2 0 0 0-4
1 0 2 -1 0-2-1 -1 0-2 0-2 1 1 0 2 02
1 -1-1 1-1-1 1-1-1-1 1 1 1-1-1-1 11
1 -1-1 1-1-1 0 2 0 0-2-2 0 2 0 0-2-2
1 -1-1 1-1-1-1-1 1 1 1 1-1-1 1 1 11
1 -1-1-1 1 1 1-1-1-1 1 1-1 1 1 1-1-1
1 -1-1-1 1 1 0 2 0 0 -2 -2 0 -2 0 0 2 2
1 -1-1-1 1 1-1-1 1 1 1 1 1 1-1-1-1-1

This is a saturated model since the number of effects
(i.e., columns of Xi) is equal to the dimension of G.
The definition of the columns of Xi is to some exent
arbitrary. However the tests shown in Table 8 are
unique in that any other definition of the columns of
Xi that preserved the same vector spaces for the
respective sets of effects would yield the same sums
of squares. The analysis shown in Table 8 leads to
conclusions similar to those obtained by Culter and
Myers.
Because of the lack of significance of the two and

three way interactions, it is reasonable to fit a model
which contains main effects only. This model has a
matrix of independent variates X2 which is shown
below.

X2 =

1i 1 -1 1 1
1 1 -1 1 0
1 1 -1 1 -1
1 1 -1 -1 1
1 1 -1 -1 0
1 1 -1 -1 -1
1 0 2 1 1
1 0 2 1 0
1 0 2; 1 -1
1 0 2 -1 1
1 0 2 -1 0
1 0 2 -1 -1
1 -1 -1 1 1
1 -1 -1 1 0
1 -1 -1 1 -1
1 -1 -1 -1 1
1 -1 -1 -1 0
1 -1 -1 -1 -1

-1
2

-21
-1
2

-1I
-1
2

-1
-1
2

-1I
-1
2

-1I
- 1
2

-1

The results of this analysis are displayed in Table 9.
As hoped, the residual goodness of fit is not signifi-
cant. Tests on the parameters corresponding to X2
indicate significant (a = 0.01) main effects for nodes
and tumor size. Predicted values based on X2 appear

Table 8. Analysis of Variance Based on Xi.

Source of variation D.F. X2

Node status 1 12.09
Skin fixation (total): S 2 5.48
S x N 2 .24
Tumor size (total): T 2 48.11
S xT 4 2.53
N x T 2 4.92
S xNxT 4 6.37

in column 5 ofTable 7. Large residuals with absolute
values in excess of 0.05 occur for SiNoT3, SiNiTi,
SJN1T2, SiN1T3, S2NoTi, S2NoT3, S2N1T2. Although
the goodness-of-fit test for this model is nonsignif-
icant, its predictive value is not good.
From this point onwards Koch, Johnson, and Tol-

ley take a different approach. They note that the
most important sources of variation are the main ef-
fects of nodes and tumor size, but that in addition,
the main effects of skin fixation and the node x
tumor size interaction have sizeable sums of
squares. They proceed to examine node status with-
in each degree of skin fixation and tumor size within
the S x N classifications. Ultimately they arrive at
the model defined by X3 where

X3 =

1i 1 1 1 0
1 1 1 00o
1 1 1 -1 0
1 1 -1 1 0
1 1 -1 0 0
1 1 -1 -1 0
1 0 1 0 1
1 0 1 00o
1 0 1 0 -1
1 0 -1 0 0
1 0 -1 0 0
1 0 -1 0 0
1 -1 1 0 1
1 -1 1 0 0
1 -1 1 0 -1
1 -1 -1 1 0
1 -1 -1 0 0
1 -1 -1 -1 0

The residual sum of squares SS[G(x) = X,8] = 2.76
with DF = 2.76 implies that this model is a good fit.
The predicted values derived on the basis OfX3 are

given in Table 7. In addition, the residuals for this
Table 9. Analysis of variance based on X2.

Source of variation D.F. X2

Skin fixation: S 2 3.76
Node status: N 1 17.89
Tumor Size: T 2 97.38
Overall 5 154.38
Residual 12 16.30
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situation are shown on the last column ofTable 7 and
are all less than 0.05 in absolute value except for the
S2N1T2 combination. Thus, they conclude that this
model provides a reasonably complete explanation
of the variation of the five-year survival rates as a
function ofthe factors skin fixation, node status, and
tumor size. The standard errors of the predicted
values are estimated by the square roots of the
diagonal elements of the matrix

VG) = X[X'VG-lX]-YX' (16)

They are shown in Table 10.

Table 10. Analysis of variance based on X3.

Source of variation D.F. X2

Skin fLxation (linear): S (L) 1 6.37
Node status: N 1 20.48
Tumor size (linear) in SwNi or S2N1 1 39.31
Tumor size (linear) in S No or S2No 1 75.25
Overall model 4 167.92
Residual 13 2.76

Example 3: Synthetic Life Table
An alternative to following a cohort and observing

them until the occurrence ofsome well defined event
is the study of separate samples drawn from non-
overlapping subpopulations each of which corre-
sponds to a specific range of values (e.g., age range)
for the overall time period of exposure to risk for the
occurrence of the vital event of interest. This sam-
pling is presumed to take place cross-sectionally at a
single instant in time when subjects are examined for
the presence ofthe event. An example of such data is
shown in Table 11.
These data, from Ashford and Sowden (11), are

from a survey of working coal miners at a represen-
tative sample of collieries distributed throughout the
United Kingdom. Each subject was classified as to

whetherhe reported the symptoms ofbreathlessness
and wheeze. Then under the assumption of (1) no
remission from the event of interest, i.e., once an
individual is observed with the event, he is never
observed subsequently without it; (2) migration be-
havior being statistically independent of the event of
interest; (3) occurrence rates for the event of interest
being constant over time; the data for the period
study in Table 11 can be regarded as a synthetic life
table. An additional convenient assumption is (4) the
survival rates associated with the respective time
points throughout thej-th interval are symmetrically
distributed with respect to the midpoint of the inter-
val.

When the conditions (1)-(4) are applicable, the
synthetic life table associated with a period studycan
be analyzed by the same probability models that
underly cohort studies. A result of these assump-

tions is that cohort studies and period studies as well
as life table analysis and contingency table analysis
can be unified into a common methodological
framework.

In the analysis that follows, due to Freeman,
Freeman and Koch (12), the Weibull distribution was
fitted to a cross-sectional (period) study. In this
contextwhen t represents the time to the occurrence
of an event of interest (e.g., a death or the detection
of a tumor), then the Weibull cumulative distribution
function may be written as:

G(t1I,,S, w) = 1 - exp { -,u(t - w)6}

,u, 8 0 for t 2 w; (17)

with the interpretation of the parameters, (A,S,w)
dependent on the type of data being analyzed.
Most applications of Weibull type distributions is

in circumstances in which a carcinogen is applied in a
relatively uniform and continuous manner (for ex-

ample, weekly skin paintings), and the variable of

Table 11. Observed frequency of symptoms and marginal proportions.

Breathless Yes; Breathless No;
Wheeze Wheeze

Breathless Wheeze Survive Wheeze;
Age Yes No Yes No Margin Margin Given Breathless
group D, 52 133 D4 Pv P2J P3

20-24 9 7 95 1841 0.9918 0.9467 0.4375
25-29 23 9 105 1654 0.9821 0.9285 0.2813
30-34 54 19 177 1863 0.9654 0.8906 0.2603
35-39 121 48 257 2357 0.9393 0.8642 0.2840
40.44 169 54 273 1778 0.9019 0.8056 0.2421
45-49 269 88 324 1712 0.8508 0.7522 0.2465
50-54 404 117 245 1324 0.7507 0.6895 0.2246
55-59 406 152 225 967 0.6811 0.6394 0.2724
60-64 372 106 132 526 0.5792 0.5563 0.2218
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interest is the time to appearance of a tumor. Peto,
Lee, and Paige (13) interpret the Weibull parameters
as follows: ,u is a rate-determining scale parameter
and 8 and w characterize the process by which the
tumor develops. Accordingly, hypotheses concern-
ing ,u are appropriate for examining whether car-
cinogens have different intensities, while differences
among the 8 indicate different processes.
From Eq. (17), it follows that

ln {1 - G(tig, 8, w)} = -,u(t - w)8 (18)
wheret refers either to time or age. It is assumed that
w has a fixed known value (e.g., w = 0) which can be
justified. As a result, a linear model involving the
parameters (In ,u) and 8 can be obtained by multiply-
ing both sides of Eq. (17) by (-1) and then applying
logarithmic transformations a second time which re-
sults in

@(t) = ln[-ln{1 - G(tlu, 8, w)}]
= In i + 8 ln (t - w) (19)

The weighted least-squares methodology in GSK
can be used to fit the model (19) to sample estimates
of 0(t) for which consistent estimates of variance can
be obtained by methods described in Forthofer and
Koch (14). To illustrate this method the data in Table
11 are used. These data have also been analyzed in a
number of other papers (15-17).
Letx denote age as it ranges from birth (x = 0) to

100 years in five-year intervals. Let j index these
five-year age groups by corresponding to the right
endpoint of the age group so that

j'= {X 1,2,3,

forx= 5, 10, 15, .. ., respectively. Since this is a
period study, it is required that the parameter w be
used to shift the survival probabilities back to the
midpoint of the age interval. Let Pj denote the pro-
portion of subjects in thej-th age interval range who
have survived (in the sense of not reporting)
breathlessness through the instant in time at which
the survey was conducted. Thus the fitted Weibull
model for surviving breathlessness is

{Pj = exp (-Iuy - 0.5)8} (20)
where the symbol = means, "is an estimate of."
Then

F(Pj) = In {-ln{Pj}} = In , + 8 ln ( - 0.5)
(21)

In matrix notation, let F = F(P5), F(P6), ..., F(P13)
be our vector of functions of estimated survival
probabilities. Then it may be written as

F = L(ln {K In [P]}) (22)

whereP' = (P5, p6,..., P13), K =-19, L =19,I9 is a
9 x 9 identity matrix, and Ine is a natural log function
ofthe vector applied to each component. Ifone starts
with the vector of observed frequencies in Table 11,
then P is written, P = Ap, where

P' = (P5,1,P5,2,P5.3,P5,4,P6,1, * P13,1,P13,2,P13,3,P13,4)
(23)

and Pik denotes the proportion of subjects in age
intervalj in symptom class k (k is 1 for breathless and
wheeze, 2 for breathless and no wheeze, 3 for no
breathless and yes wheeze, and 4 for no symptoms),
and A = [O0 1 1] (D 19. Here, (0 denotes Kronecker
product. This, F may then be fitted to the following
linear model,

L log 4.5
1 log 5.5 log u

EA{F} = Xp = ... ... 5
I log 12.5 (24)

where EA {. } means asymptotic expectation. The
numerical results and fitted values between age 0 and
89 are shown in Table 12. The goodness of fit x2-
statistic indicates a satisfactory fit and the test of
degeneracy of the model (Ho: 8 = 0) is highly signifi-
cant CIable 13).
The original data given by Ashford and Sowden

make it possible to consider two symptoms. Using
the formulation for the breathlessness margin, it is
possible to fit Weibull models to each margin and
some appropriate measure of association. Freeman,
Freeman, and Koch (12) present this method in more
detail.
Table 12. Observed and fitted proportions surviving breathlessness.

Observed Fitted
Total surviving surviving

Age subjects breathlessness breathlessness
group ni Pj Pi

0-4 - 1.0000
5-9 0.9999
10-14 - 0.9994
15-19 - 0.9975
20-24 1952 0.9918 0.9928
25-29 1791 0.9821 0.9831
30-34 2113 0.9654 0.9660
35-39 2783 0.9393 0.9385
40-44 2274 0.9019 0.8978
45-49 2393 0.8508 0.8413
50-54 2090 0.7507 0.7678
55-59 1750 0.6811 0.6780
60-64 1136 0.5792 0.5749
65-69 0.4643
70-74 0.3539
75-79 - 0.2520
80-84 - 0.1658
85-89 0.0996
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Table 13.

Parameters for
breathlessness,
fitted model

Parameter P. st. S.E. X2 DF

In8,u -11.303 0.245
4.241 0.105

Hypothesis test
Model: 8 = 0 1628.022 1
Goodness of fit 6.138 7

outlined in GSK to the IPF predicted frequencies in
Table 15. By writing the MLE proportions corre-
sponding to these cell estimates in vector notation as
p = (,i3111, p 112, P 121, . . .,P562), with the restrictions
EjPhij = lforh = 1,2, ...,Sandi= 1,2, ...,6,the
estimates of the logit functions in Eq. (25) can be
expressed in vector form as

I=F(p) = Al In() (26)
where Al = [1 - 1] 0130 and In denotes the natural
logarithm of I each of the elements of j. As a result,
the logit model in Eq. (25) can be expressed as

Example 4: Dose Response.
The data in Table 14 which appeared in Sugiura

and Otake (18) show the number of deaths from
leukemia (LD) observed at the Atomic Bomb Casu-
alty Commission (ABCC) and the number of indi-
viduals who did not die from leukemia (NLD) during
1950-1970 according to age at the time of the atomic
bomb and the estimated radiation dosage. The
analysis that follows is taken from Landis, Heyman,
and Koch (19).
The data in Table 14 involve s = 6 subpopulations

(dose), r = 2 response categories (survival status),
and q = S levels of the covariable (age).
For the first step of the analysis the logit model

f(hi)h= In (ffhi1I7rhi2) = y + Ah + f (25)

forh = 1,2, . ..,Sandi = 1,2, . . . ,6isassumed
using either the IPF algorithm discussed in Bishop et
al. (1) or the Newton-Raphson iteration procedure
illustrated by Sugiura and Otake (18). For these data
in Table 14, the maximum likelihood cell estimates
under this model are as shown in Table 15. The
goodness of fit statistic for model is QL = 27.8 for the
likelihood ratio test or QP = 27.6 for the Pearson
chi-square test.

Alternatively, using the WLS approach outlined in
GSK, the goodness-of-fit statistic is QwLs = 22.9. In
each case, these statistics asymptotically follow the
chi-square distribution with DF = 20 under the
hypothesis of no dose x age interaction. As a result,
this hypothesis is accepted at the a = 0.10 level of
statistical significance. However, it should be noted
that many of the expected cell frequencies in Table
15 are rather small (i.e., less than 5), which casts
doubt on the strict validity of the goodness-of-fit
statistic. We will, however, assume the model with
no second order interaction is adequate.
As indicated in Koch et al. (5), the maximum

likelihood estimator ,B for the parameters associated
with model (25) and its corresponding estimated
covariance matrix V(,3) can be determined by ap-
plying the WLS computational procedures originally

EA [F(P)] = XLP, (27)
where EA denotes asymptotic expectation and B can
be obtained by WLS computations. The design ma-
trix XL and its parameter vector B which corresponds
to the parameterization given by Sugiura and Otake
(18) can be written (10) as:

16
16

XL = 16
30 X 10 16

16

/3
lo x I

B 16
B 06
B 06
B 06
B -16

/32
,33
,34
/35
,86
al
a2

a3

a4_

06
16
06
06

-16

06
06
16
06

+16

06
06
06
16

-16

(28)

where B' = [05, Is], 1r denotes a vector of r ones and
Or denotes a vector of r zeros. The estimated param-
eters, together with their estimated standard errors,
are shown in Table 16 and the ANOVA table is
shown in Table 17. These results are identical to
those obtained by Sugiura and Otake.
By the two-stage ML/WLS method of Koch et al.

(5), stepwise model-fitting techniques can be used to
arrive at a model which best reflects the variation in
the data with a minimum number of parameters.
Since age was shown to have a nonsignificant effect
it was removed from the model. The new analysis
shows that the smoothed probability of leukemia on
the logit scale was best characterized by a linear
model on the square root of the midpoint on the
radiation dosage scale. The final model had a matrix
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Table 14. Deaths from leukemia observed at ABCC (1950-1970).

Dose, rads

Survival Not in
Age statusa city 0-9 10-49 59-99 100-199 200+

0-9 LD 0 7 3 1 4 11
NLD 5015 10752 2989 694 418 387

10-19 LD 5 4 6 1 3 6
NLD 5973 11811 2620 771 792 820

20-24 LD 2 8 3 1 3 9
NLD 5669 10828 2798 797 5% 624

35-49 LD 3 19 4 2 1 10
NLD 6158 12645 3566 972 694 608

50+ LD 3 7 3 2 2 6
NLD 3695 9053 2415 655 393 289

aLD denotes death from leukemia; NLD denotes nondeath from leukemia.

Table 15. Maximum likelihood cell estimates under ogit model assuming no dose x age interaction.

Dose, rads

Survival Not in
Age statusa city 0-9 10-49 59-99 100-199 200+

0-9 LD 2.62 9.28 4.11 1.31 2.04 6.63
NLD 5012.38 10749.71 2987.89 693.69 419.% 391.37

10-19 LD 2.17 7.07 2.50 1.01 2.67 9.59
NLD 5975.83 11807.93 2623.50 770.99 792.33 816.41

20-34 LD 2.47 7.80 3.22 1.26 2.42 8.83
NLD 5668.52 10828.20 2797.78 7%.74 5%.58 624.17

35-49 LD 3.64 12.34 5.55 2.07 3.79 11.61
NLD 6157.36 12651.66 3564.46 971.93 691.21 606.39

50+ LD 2.10 8.51 3.62 1.35 2.08 5.34
NLD 3695.90 9051.38 2414.38 655.65 392.92 289.66

"LD denotes death from leukemia; NLD denotes nondeath from leukemia.

of independent variables XF and parameter vector BF
which are:

16 ]
16 S

XF 16 S
30x2 16 S

16

2 x I B (29)

where S' = (0, 2.24, 5.48, 8.66, 12, 25.17.32). The
estimates for this model are

-7.61I8F 0.20 (30)
and

V [- 18 31 -0160] X 10-3

(31)

The ANOVA table is shown in Table 18. Analogous
results would be anticipated for a ML fit by
Newton-Raphson or some other direct optimization
method.

Finally, the observed and fitted proportions of
death from leukemia are shown in Table 19 for each
mdiation dose subpopulation.

Table 16. Estimated parameters and their estimated standard
errors under model X.

Estimated Estimated
Parameter parameter s.e.

/32 0.502 0.315
/33 0.%9 0.360
/34 1.285 0.469
,8s 2.229 0.393
f36 3.479 0.319
,u -7.624 0.278
Ol 0.068 0.176
a2 -0.298 0.179
a3 -0.113 0.175
a4 0.190 0.152
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Table 17. ANOVA table for model XL.

FARM
Source of WLS test LR test
variation DF statistic statistic

Age 4 4.50 4.68
Dose 5 243.44a 175.77a
Dose x age
interaction 20 Not definedb 27.83c

aMeans significant at a c 0.01.
bDenotes the log-likelihood ratio statistic obtained from IPF.
cNot defined because FARM is applied to no dose x age in-

teraction model predicted frequencies.

Table 18. ANOVA table for model XF.

Source of WLS test
variation D,F statistic

Scored dose effect 1 238.56**
Lack of fit for

reduction of XL to XF 8 6.51

aMeans significant at a = 0.01.

Table 19. Observed and fitted leukemia death rate per 10,000 under
model XF for each radiation dose subgroup.

Radiation Leukemic death rate per 10,000 Standard error
dose of predicted

levels, rad Observed Predicted rate per 10,000

Not in city 4.9 5.0 0.67
0-9 8.2 7.7 0.88
10-49 13.2 14.5 1.33
50-99 18.0 26.9 2.28
100-199 44.7 54.0 5.31
200+ 151.6 143.9 20.25
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